358. The Direct Calculation of True Dipole Moments from Measurements on Solutions or Pure Liquids.*

By A. D. Buckingham and R. J. W. Le Fèvre.

An empirical relationship is presented whereby for a given molecule $\mu_{\text {gas }}$ may be obtained from $\mu_{\text {sodution }}$ or $\mu_{\text {ilquid }}$. Comparisons made by application to a number of polar liquids, representative of different molecular shapes, show that the new equation is superior to others previously proposed.

A NUMBER of empirical equations, connecting apparent dipole moments obtained from solutions in benzene with the true values determined in the gaseous states, were recently reviewed by Angyal, Barclay, and Le Fèvre (J., 1950, 3370). The most satisfactory seemed to be that-listed as (1) below-proposed earlier by Barclay and Le Fèvre (J., 1950, 556). Unfortunately, however, its applicability did not extend beyond non-polar solvents. Attempts have accordingly been made to remedy this defect. As a result, a new expression can now be submitted, which, used wholly or in part, enables the ratios $\mu_{\text {iquid }} / \mu_{\text {gas }}$ or $\mu_{\text {solution }} / \mu_{\text {gas }}$ to be calculated a priori more accurately than by other relationships previously recorded. In support of this claim, tests on the representative series of molecules used before (references above) will now be summarised.

* In this and subsequent papers on dipole moments from these laboratories, subscripts 1 and 2 will refer, respectively, to the solvent and solute. This is the reverse of the convention formerly adopted in our papers.--R. J. W. Le F.

Equations Examined.-In these, subscripts 1 and 2 indicate solvent and solute respectively, ε is the dielectric constant, d the density, and n the refractive index, e is the base of Napierian logarithms, and x^{2} a quantity dependent on the shape of the dissolved molecule under consideration. Values of x^{2} have been derived from scale-drawings incorporating Stuart's " Wirkungsradien" (Z. physikal. Chem., 1935, B, 27, 350) ; if A is the measurement along the axis of $\mu_{\text {resultant }}$ and C is the lesser of the other two dimensions perpendicular to A, then generally $x^{2}=\left(C^{2}-A^{2}\right) /(\text { greatest length })^{2}$. The ξ used by Ross and Sack (Proc. Phys. Soc., 1950, 63, 893) also reflects the molecular structure; it can be ascertained quickly from curves reproduced in the paper just cited.

The equations now to be considered are numbered for subsequent reference :
(1) $\frac{\mu_{\text {soln. }}^{2}}{\mu_{\text {gas }}^{2}}=1+\frac{\varepsilon_{1}-1}{\varepsilon_{1}+2}\left(\mathrm{e}^{\mathrm{x}^{2}}-\frac{n_{1}{ }^{2}}{n_{2}^{2}}\right)$
(2) $\frac{\mu_{\text {soln. }}^{2}}{\mu_{\text {gas }}^{2}}=1+\frac{\varepsilon_{1}-1}{\varepsilon_{1}+2}\left[\mathrm{e}^{x^{2}}-\left(\mathrm{e}-\mathrm{e}^{x^{2}}\right)^{3\left(n_{1}{ }^{2}-n_{2}{ }^{2}\right)\left(1-\mathrm{e}^{\left.x^{2}\right)^{2}}\right]}\right.$
(3) $\frac{\mu_{\text {soln. }}^{2}}{\mu_{\text {gas }}^{2}}=1+\frac{\varepsilon_{1}-1}{\varepsilon_{1}+2}\left[\mathrm{e}^{x^{2}}-\left(\mathrm{e}-\mathrm{e}^{x^{2}}\right)^{3\left(n_{1}{ }^{2}-n_{2}{ }^{2}\right)\left(1-\mathrm{e}^{2}\right)^{2}}\right]-\frac{1 \cdot 69 \mathrm{e}^{x^{2}}\left(\varepsilon_{1}-1\right)\left(n_{2}{ }^{2}+1\right)\left|\varepsilon_{1}-n_{2}{ }^{2}\right|}{\varepsilon_{1}{ }^{2} n_{2}{ }^{2}\left(\mathrm{e}^{x^{3}}+1\right)\left(\mathrm{e}^{M_{2} / d_{2} A_{2} B_{2} C_{2}}\right)}$
(4)

$$
\begin{equation*}
\frac{\mu_{\text {soln. }}}{\mu_{\mathrm{gas}}}=\frac{3 \varepsilon_{1}}{\left(\varepsilon_{1}+2\right)} \cdot \frac{1+\left(n_{2}^{2}-1\right) \xi}{\varepsilon_{1}+\left(n_{2}^{2}-\varepsilon_{1}\right) \xi} \tag{5}
\end{equation*}
$$

$\frac{\mu^{2} \text { liq. }}{\mu_{\text {gas }}^{2}}=1+\frac{\varepsilon-1}{\varepsilon+2}\left(\mathrm{e}^{x^{2}}-1\right)-\frac{1 \cdot 69 \mathrm{e}^{x^{2}}(\varepsilon-1)\left(n^{2}+1\right)\left(\varepsilon-n^{2}\right)}{\varepsilon^{2} n^{2}\left(\mathrm{e}^{x^{2}}+1\right)\left(\varepsilon^{M / d A B C}\right)}$
(6) $\frac{\mu^{2} \text { liq. }}{\mu_{\text {gas }}^{2}}=$ as No. (5) but with numerical constant $=1.70$
(7)

$$
\mu_{\mathrm{gas}}^{2}=\frac{9 \boldsymbol{k} T M}{4 \pi \boldsymbol{N} d} \cdot \frac{\left(\varepsilon-n^{2}\right)\left(2 \varepsilon+n^{2}\right)}{\varepsilon\left(n^{2}+2\right)^{2}}
$$

Equation (1) was advanced by Barclay and Le Fèvre ($J ., 1950$, 556). Although this gave results in good agreement with experiment for many solutes, yet there were some (e.g., paraldehyde, sulphur dioxide, and trimethylamine) where it was less satisfactory. We therefore sought a substitute for the term $n_{1}{ }^{2} / n_{2}{ }^{2}$ in (1). In this-and other empirical approaches underlying the present paper-we have been guided by intuitive guesses very similar to those set out before (J., 1950, 3370). These we would now amend to read: (a) that x^{2}, being concerned with areas, may be a measure of hindrance to rotation, so that $\exp x^{2}$ (or perhaps $1-\exp x^{2}$) may reflect the non-randomness of rotational modes about the greatest and least axis of length of the solute molecule, and (b) that a second term is needed having some relation to the exclusion from spherical distribution of the centres of the molecules surrounding the solute in the directions collinear and perpendicular to its resultant moment, and-in consequence-to the disturbance from isotropy of its polarisable solvent environment.

For the requirement of (b) the introduction of $\left(e-e^{x^{2}}\right)$ seemed reasonable, since such a factor could express the degree of elongation of the molecule in a direction at right angles to the dipole axis. Because x^{2} must (by its definitition) be less than unity, it followed that e would be the maximum value for $\exp x^{2}$. Thus for an imaginary plane structure (i.e., one with negligible thickness), whose resultant dipole axis is perpendicular to the plane, ($e-e^{x^{2}}$) would be zero; its values for other extreme shapes were obvious: notably it could never become negative so that quantities such as :

$$
\begin{align*}
& \left(\mathrm{e}-\mathrm{e}^{x^{2}}\right)^{9\left(\varepsilon_{1}-n_{2}^{2}\right)\left(1-\mathrm{e}^{2}\right)^{2} / \varepsilon_{1}} \tag{A}\\
& \left(\mathrm{e}-\mathrm{e}^{x^{2}}\right)^{3\left(n_{1}^{2}-n_{2}^{2}\right)\left(1-\mathrm{e}^{2}\right)^{2}} \tag{B}
\end{align*}
$$

would be entirely real.
(A) and (B) were the two most promising alternatives to $n_{1}{ }^{2} / n_{2}{ }^{2}$ found after many trials. When equations containing them were applied to the test substances in Table IV of the paper by Barclay and Le Fèvre (loc. cit.) both proved better than the original equation (1).

However, if used on solutions of nitrobenzene in several solvents (Cleverdon and Smith, Trans. Faraday Soc., 1949, 45, 109), an equation with (B) was superior to one with (A). Thus we selected equation (2) as the best replacement for (1).

Nevertheless, equation (2) was still limited in usefulness to cases where the solvent was non-polar. To make it general an extra term was accordingly devised. This addition clearly had to vanish if ε were unity (when $\mu_{\text {soln }}=\mu_{\text {gas }}$), and to be zero or very small if the solvent were non-polar. These desiderata were met by utilising the factors $(\varepsilon-1)$ and $\left(\varepsilon-n^{2}\right)$. Of many possible " third terms" tried, that shown in equation (3) was the most successful.

The full form of the new equation now proposed is (3) ; in application to pure liquids this becomes (5) or (6). For solutions in non-polar solvents the third term is small and equation (2) may be used successfully. In equations (1), (2), (3), and (5) refractive indexes for the Na_{D} line are employed. The change in the numerical constant from equation (5) to equation (6) is caused by taking, whenever available, $n^{2}{ }^{2}$ eff. instead of n_{D}^{2} in the latter [the " effective" refractive index is estimated by equating the distortion polarisation to $\left(n^{2}\right.$ eff. -1$) M /\left(n^{2}\right.$ eff. +2$) d_{\text {iig. }}$. . Equation (4) is due to Ross and Sack (loc. cit.); here also $n^{2}{ }_{\text {eff. }}$ has been introduced as far as possible, but when it is unknown the procedure recommended by Ross and Sack has been followed and the n^{2} corresponding to $1.05\left[R_{L}\right]_{D}$ has been adopted. Equation (7) is Onsager's (J. Amer. Chem. Soc., 1936, 58, 1486) ; it is included now for comparison because Böttcher (Physica, 1939, 6, 59) has already shown it to be fairly satisfactory for many polar substances. Here again $n_{\text {eff., }}^{2}$, rather than n_{D}^{2}, has been used if available.

Table 1 sets out the numerical data required for testing the equations. The apparent dipole moments shown under $\mu_{\text {liq }}$. or $\mu_{\mathrm{C}_{\mathrm{s}} \mathrm{H}_{\mathrm{g}}}$ have been calculated from the differences between the total polarisations of the substances (as pure liquids or at infinite dilution in benzene) and the distortion polarisations recorded from measurements on gaseous dielectrics, except in those instances where gaps occur under n^{2} efr. in Table 1 when $\left[R_{L}\right]_{\text {D }}$ has of necessity replaced ${ }_{\mathrm{D}} P$ (for source references, see Barclay and Le Fèvre, loc. cit.; Angyal, Barclay, and Le Fèvre, loc. cit.). The values of ξ quoted to three figures are those estimated from the geometrical dimensions of the molecules by Ross and Sack (loc. cit.); the remainder have been derived from the corresponding lengths A, B, and C by the method described by these authors.

Table 2 shows the relative success with which the various equations will give $\mu_{\text {gas }}$ from $\mu_{C_{6} \mathrm{H}_{6}}$ or $\mu_{\text {liq. }}$.

Table 1. Numerical data required.

Substance	M_{2}	d_{4}^{25}	$\left(n_{D}^{2}\right)^{25}$	$\left(n^{2} \text { efi. }\right)^{25}$	ε^{25}	$\mu_{\text {liq. }}$	$\mu_{\mathrm{C}_{6} \mathrm{H}_{6}}$	A	B	C	ξ
$\mathrm{CH}_{3} \mathrm{Cl}$	$50 \cdot 49$	$0 \cdot 8785$	1.751	$1 \cdot 929$	$9 \cdot 68{ }^{1}$	$1 \cdot 19$	$1 \cdot 69$	$5 \cdot 27$	$3 \cdot 80$	$3 \cdot 80$	$0 \cdot 267$
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	84.94	1-3175	2.0295	$2 \cdot 349$	$8 \cdot 93{ }^{1}$	$\mathrm{I} \cdot 14_{5}$	1.55	$4 \cdot 10$	$6 \cdot 10$	$3 \cdot 60$	$0 \cdot 38$
CHCl_{3}	119.39	$1 \cdot 4790$	2.0825	$2 \cdot 368$	$4 \cdot 724^{1}$	$0 \cdot 97$;	1•13	$4 \cdot 10$	6.50	$6 \cdot 50$	$0 \cdot 364$
$\mathrm{CH}_{3} \cdot \mathrm{CN} \ldots \ldots$.	$41 \cdot 05$	$0 \cdot 7772$	1.800	-	36.72	$1 \cdot 36$	$\begin{array}{r} 3 \cdot 11- \\ 3 \cdot 51 \end{array}$	$5 \cdot 95$	$3 \cdot 80$	$3 \cdot 80$	$0 \cdot 22$
$\mathrm{CH}_{3} \cdot \mathrm{NO}_{2}$	61.04	1-1362	1.9040	-	$27 \cdot 75{ }^{3}$	$1 \cdot 325$	$\begin{gathered} 3.02- \\ 3 \cdot 13 \end{gathered}$	$5 \cdot 20$	$4 \cdot 50$	$3 \cdot 80$	$0 \cdot 27$
COMe_{2}	58.08	$0 \cdot 7863$	1.8400	-	$19 \cdot 11^{4}$	1.52	$2 \cdot 74$	$5 \cdot 15$	6.54	$3 \cdot 80$	0.315
Paraldehyde	$132 \cdot 16$	0.9896	1.989	$2 \cdot 499$	$12.93{ }^{5}$	$1.74{ }_{5}$	1.87	$3 \cdot 80$	9.50	$9 \cdot 50$	0.59
SO_{2}	64.06	1.369	1.763	1.911	$13.20{ }^{6}$	1-14	1.61	$3 \cdot 44$	5.00	$3 \cdot 08$	$0 \cdot 354$
NMe_{3}	$59 \cdot 11$	$0 \cdot 6267$	1.808	-	$2 \cdot 44{ }^{7}$	0.72	$0 \cdot 86$	$3 \cdot 82$	6.55	6.55	$0 \cdot 47$
$\mathrm{Ph} \cdot \mathrm{CH}_{3}$	$92 \cdot 13$	$0 \cdot 8657$	$2 \cdot 2320$	-	$2 \cdot 366^{8}$	0.34	$0 \cdot 34$	$8 \cdot 25$	6.05	$3 \cdot 80$	$0 \cdot 20$
PhCl	$112 \cdot 56$	1-1011	$2 \cdot 3180$	2.554	5.612^{3}	$1 \cdot 15$	1.59	8.08	6.05	$3 \cdot 16$	$0 \cdot 181$
$\mathrm{Ph} \cdot \mathrm{NO}_{2}$	123-11	1-1986	$2 \cdot 4045$	$2 \cdot 633$	$34 \cdot 89{ }^{\text {a }}$	$1 \cdot 69$	3.95	$8 \cdot 00$	6.05	$2 \cdot 90$	$0 \cdot 236$
$\mathrm{Ph} \cdot \mathrm{CN}^{2}$	$103 \cdot 12$	$1 \cdot 0013$	$2 \cdot 329$	-	$25 \cdot 20^{8}$	$1 \cdot 71$	$3 \cdot 74$	8.95	6.05	$2 \cdot 90$	$0 \cdot 15$

References: n_{D}^{2} and n^{2} eff. values: Barclay and Le Fèvre (J., 1950, 556).

Table 2. Calculations of μ gas by equations (1)-(7).

Substance	By (1)	By (2)	By (3)	By (4)	By (5)	By (6)	By (7)	μ_{g} (found)
$\mathrm{CH}_{3} \mathrm{Cl}$	$1 \cdot 89$	$1 \cdot 85$	1.92	1.85	1.96	1.91	$1 \cdot 76$	1.86
$\mathrm{CH}_{2} \mathrm{Cl}_{2} \ldots \ldots$.	1.59	1.57	1.60	1.48	1.58	1.55	1.57	1.57
$\mathrm{CHCl}_{3} \ldots \ldots$.	1.02	1.01	1.03	1.09	0.98	0.94	1.08	1.01
$\mathrm{CH}_{3} \cdot \mathrm{CN} \ldots \ldots$.	$3 \cdot 49-$	$3 \cdot 49$ -	$3 \cdot 60-$	3.58-	$3 \cdot 96$	$3 \cdot 98$	$3 \cdot 58$	$3.94-$
	3.94	3.94	$4 \cdot 06$	$4 \cdot 04$				3.98
$\mathrm{CH}_{3} \cdot \mathrm{NO}_{2}$	$3 \cdot 30-$	3.27-	3.36-	3.29-	$3 \cdot 17$	3-19	3.04	$3 \cdot 42$
	$3 \cdot 42$	$3 \cdot 39$	$3 \cdot 49$	$3 \cdot 41$				
$\mathrm{COMe}_{2} \ldots \ldots$.	$2 \cdot 95$	$2 \cdot 87$	$2 \cdot 98$	$2 \cdot 88$	$3 \cdot 04$	$3 \cdot 04$	$2 \cdot 98$	$2 \cdot 85-$
Paraldehyde	$1 \cdot 60$	1.48	1.52	$1 \cdot 50$	$1 \cdot 65$	$1 \cdot 59$	$2 \cdot 72$	$1 \cdot 44$
SO_{2}........	$1 \cdot 70$	1.63	$1 \cdot 69$	1.64	1.59	1.58	$1 \cdot 90$	1.62
$\mathrm{NMe}_{3} \ldots \ldots .$.	$0 \cdot 78$	$0.74{ }_{5}$	$0 \cdot 77$	0.80	0.67	$0 \cdot 67$	$0 \cdot 74$	$0 \cdot 64$
$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CH}_{3} \ldots$	$0 \cdot 37$	$0 \cdot 37$	$0 \cdot 37$	$0.38{ }_{5}$	0.37	0.37	$0 \cdot 34$	$0 \cdot 37$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl} \ldots \ldots$.	1.74	1.72	1.73	1.81	1-67	1-64	$1 \cdot 34$	1.73
$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{NO}_{2} \ldots$	$4 \cdot 29$	$4 \cdot 25$	$4 \cdot 27$	$4 \cdot 21$	$4 \cdot 24$	$4 \cdot 24$	$3 \cdot 96$	$4 \cdot 24$
$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CN} \ldots$	$4 \cdot 09-3$	$\begin{gathered} 4 \cdot 07- \\ 4 \cdot 32 \end{gathered}$	$\begin{gathered} 4 \cdot 07- \\ 4 \cdot 32 \end{gathered}$	$\begin{gathered} 4 \cdot 43- \\ 4 \cdot 70 \end{gathered}$	$4 \cdot 31$	$4 \cdot 33$	3.58	$4 \cdot 39$

Finally, Table 3 presents the ratios of ${ }_{o} P_{\text {soln. }} / \mathrm{o} P_{\text {gas }}\left(\right.$ i.e., $\mu^{2}{ }_{\text {soln. }} / \mu^{2}$ gas $)$ forecast by equations (1), (2), (3), and (4) for one solute, nitrobenzene, in a range of polar and nonpolar solvents, the properties of which have been conveniently listed by Cleverdon and Smith (loc. cit.).
Table 3. Calculations of ${ }_{o} \mathrm{P}_{\text {soln. }} /{ }_{o} P_{\text {gas }}$ for solutions of nitrobenzene by equations (1)-(4).

Solvent	$E_{25^{\circ}}{ }^{\text {solvent }}$	$\left(n_{D}^{2}\right)_{25}{ }^{\text {solvent }}$	By (1)	By (2)	By (3)	By (4)	${ }_{\mathrm{o}} P_{\mathrm{s}} / \mathrm{O} P_{\mathrm{g}}$ (found)
n-Hexane	1.887	$1 \cdot 8847$	0.92	0.95	0.90	0.95	0.91
Diisoamyl	1.976	1.9973	0.90	0.93	$0 \cdot 89$	$0 \cdot 94$	$0 \cdot 88$
cycloHexane	$2 \cdot 016$	$2 \cdot 0221$	$0 \cdot 89$	0.92	0.89	0.93	$0 \cdot 88$
Decalin	$2 \cdot 162$	$2 \cdot 16$	$0 \cdot 87$	$0 \cdot 89$	0.87	0.90	$0 \cdot 86$
Dioxan	$2 \cdot 204$	2.0171	$0 \cdot 88$	0.91	0.90	$0 \cdot 89$	$0 \cdot 85$
$\mathrm{CCl}_{4} \ldots \ldots$.	$2 \cdot 228$	$2 \cdot 1656$	$0 \cdot 86$	0.88	$0 \cdot 87$	$0 \cdot 89$	$0 \cdot 86$
p-Xylene	$2 \cdot 260$	$2 \cdot 2317$	$0 \cdot 85$	0.87	0.86	0.88	$0 \cdot 85$
$\mathrm{C}_{6} \mathrm{H}_{6}$	$2 \cdot 273$	$2 \cdot 2417$	0.85	0.87	$0 \cdot 85$	0.88	$0 \cdot 87$
CS_{2}	$2 \cdot 633$	$2 \cdot 6360$	0.76	0.72	$0 \cdot 70$	0.81	0.75
$\mathrm{Et}_{2} \mathrm{O}$	$4 \cdot 250$	1.8295	0.82	0.90	$0 \cdot 78$	0.53	0.57
CHCl_{3}	$4 \cdot 724$	2.0825	0.75	0.81	$0 \cdot 68$	0.48	0.55
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$	$5 \cdot 612$	$2 \cdot 3180$	0.67	$0 \cdot 69$	$0 \cdot 47$	0.39	$0 \cdot 34$
$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{NO}_{2}$	34.89	$2 \cdot 4045$	$0 \cdot 47$	$0 \cdot 47$	$0 \cdot 16$	$0 \cdot 020$	$0 \cdot 16$

Conclusions.-From Table 2 it may be seen that values of $\mu_{\text {gas }}$ predicted by equations (2) and (3) agree in the main with the observed values within differences not in excess of the experimental errors. The latter are of the order of $2 \%, 1 \%$ in the value of $\mu_{\mathrm{C}_{6} \mathrm{H}_{\mathrm{a}}}$, and 1% in the observed value of $\mu_{\text {gas. }}$. Moreover, both (2) and (3) give figures for $\mu_{\text {gas }}$ which are, on the whole, more correct than those computed by either (1) (the Barclay-Le Fèvre equation) or (4) (the Ross-Sack equation).

Equation (5) -and also (6), which by utilising n^{2} eff. instead of n_{D}^{2} gives slightly better results than (5)-forecasts values for μ_{g} (from observations solely on the pure liquids) which are essentially of a similar accuracy to those predicted by the equation of Barclay and Le Fèvre on benzene solutions. Equation (5) certainly yields results which are superior to those derived by (7) (the Onsager equation).

From the evidence of Tables 2 and 3 , it appears (a) that by use of data obtained from solutions in benzene, the most probable value for μ_{g} is obtained by application of equation (2), and (b) by use of data obtained from pure liquids, the most satisfactory equation to apply is (5). Equation (6), utilising n^{2} eff., will not be a form useful in practice because a knowledge of n^{2} eff. implies the existence of "gas" measurements, which would themselves permit a direct calculation of μ_{g}.

We conclude by referring to the case of water, since among the 33 substances for which Böttcher (loc. cit.) estimated $\mu_{\text {gas }}$ via the Onsager formula, this gave the worst result, viz., $\left(\mu_{\mathrm{gas}}\right)_{\text {cale. }}=3 \cdot 0-3 \cdot 1 \mathrm{D}$, in contrast to the observed figure of 1.8 D . In our recalculations the following data are used : $\varepsilon^{25}=78.42$ (Åkerlof and Oshrey, J. Amer. Chem. Soc., 1950, 72, 2844), $(M / d)^{25}=18.07$ c.c. (I.C.T., III, 25), distortion polarisation $=4.03$ c.c. (Stranathan, Phys. Review, 1935, 48, 538), $\left(n_{\mathrm{D}}^{2}\right)^{25}=1.7756$ (I.C.T., VII, 13), $\left(n^{2}{ }_{\mathrm{eff}}\right)^{25}=$
$1 \cdot 86$; and $A: B: C=2 \cdot 73: 3 \cdot 35: 2.44$ (Angyal and Le Fèvre, $J ., 1952,1651$); accordingly ${ }_{\mathrm{r}} P_{\text {liq. }}=17.40$ c.c., whence $\mu_{\text {liq. }}=0.808$ D.

Appropriate substitutions in equations (5), (6), and (7) yield values for ($\left.\mu_{\text {gas }}\right)_{\text {calc. }}$ of $1 \cdot 37,1 \cdot 40$, and $3 \cdot 10 \mathrm{D}$, respectively, against 1.84 D by direct measurement (cf. Angyal and Le Fèvre, loc. cit.). Böttcher (loc. cit.) quotes also ε, d, and n_{∞}^{2} for water at 100°; these by equations (5) or (7) lead to (μ gas $)_{\text {calc. }}=1.5$ or 3.0 D . It is seen that the predictions by (7) are some three times as high as those by (5) are low. Considering that between the $\mathrm{H}_{2} \mathrm{O}$ molecules of water there are directed interactions of an exceptional kind (possibly producing pseudo-crystalline domains) not operative within organic liquids (for references, see Wells, " Structural Inorganic Chemistry," Oxford, 2nd Edn., 1950, pp. 427-432), we may claim that the applicability of equation (5) is not unsatisfactory. It is interesting that the abnormalities of physical properties shown by water do not occur with hydrogen sulphide, the dielectric constant of which according to Eversheim (Ann. Physik, 1904, 13, 492) is 5.4 at 25° (measured under pressure). This value in conjunction with other quantities cited by Angyal and Le Fèvre (loc. cit.) yielded by equation (6) ($\left.\mu_{\text {gas }}\right)_{\text {calc. }}=0.92 \mathrm{D}$. The experimental figure is 0.89 D . Equation (7) with the same data gives $\left(\mu_{\text {gas }}\right)_{\text {calc. }}=0.95 \mathrm{D}$.
[Added, April 8 th, 1952.] Since the above paper was submitted, Everard, Kuman, and Sutton ($J ., 1951,2807$) have redetermined $\mu_{\mathrm{C}_{6} \mathrm{H}_{6}}$ for $\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CN}$ at 25° as 4.05 D . By using this figure in lieu of the $3 \cdot 74-3.97$ D given in Table 1 , the following values for $\mu_{\text {gas }}$ are obtained:

By (1)	By (2)	By (3)	By (4)
$4 \cdot 43$	$4 \cdot 41$	$4 \cdot 41$	$.4 \cdot 80$

The forecasts by (2) and (3) are seen to agree well with $\mu_{\text {gas(obs.), }}$ viz., 4.39 D (cf. Table 2).
University of Sydney, N.S.W., Australia.
[Received, November 5th, 1951.]

